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SUMMARY

Using the 1ifting surface theory and the acceleration potential method for
the flow field of an axial turbo-compressor stage, a recursive and a direct
method are presented that make use of the eigenfunction solutions of the iso-
lated rotor and stator to solve for the rotor-stator interaction problem. The
net pressure distribution on the rotor and stator blades is represented by mod-
ified Birnbaum series, whose coefficients are determined using a matrix proce-
dure and satisfying the boundary conditions on the surface of the blades. The
relation between the matrix operators of the recursive and the direct methods
is also shown. Expressions have been given for the blade circulation, the
axial and tangential forces on the blade, the rotor power required, and the
induced upwash velocity of the stage.

1. INTRODUCTION

The performance estimation of a turbomachine stage requires the aerody-
namic characteristics of the rotor and the stator including their mutual
interaction. The purpose of this paper is to discuss the aerodynamics of a
rotor-stator combination in.a turbomachine. The spacing between the adjacent
blade rows of a turbomachine is generally small compared to the blade chord.
Hence, the aerodynamic interference between the rotor and stator blade rows may
be expected to be significant and needs to be included for an accurate analysis
of the stage aerodynamic behavior. Existing theories 1ike those of McCune
(ref. 1), Namba (ref. 2), Schulten (ref. 3) and others consider only a single
annular row of blades while other theories 1ike that of Kaji and Okazaki
(ref. 4) consider two adjacent two-dimensional infinite cascades. Hence, a
method 1s required for calculating the aerodynamic flow field due to the the
simultaneous presence of two rows of closely spaced annular cascades and is
outlined in the following. '

Since the chordwise and radial pressure distribution on the rotor and
stator blades can be represented by a Birnbaum series, the heart of the 1ifting
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surface method is the determination of the coefficients of these series. 1In
reference 5, these coefficients were determined directly by satisfying flow
tangency conditions on the upper and lower surfaces of the rotor and stator
blades simultaneously. It was possible to obtain the parameters governing the
blade loading and the discrete frequency noise field at the operating point.

In the following, a recursive scheme for determining the flow field by
combining the solutions of the isolated rotor and stator will be outlined.
Consequently, the procedure for calculating the off-design performance of a
given rotor-stator combination is greatly simplified. The recursive procedure
described here enables one to determine the Birnbaum coefficients of the rotor-
stator combination to any desired order of approximation. It is possible to
estimate the aerodynamic interference between the two blade rows by this
procedure.

A simple and direct method which solves for the flow field of the rotor
and stator simultaneously is also indicated.

In section 2, a brief outline of the results of the acceleration potential
method for dealing with the rotor-stator problem is given. 1In section 3, the
basic solutions to the rotor and stator are obtained by solving a nonhomo-
geneous problem giving the pressure distribution over the respective blades
ignoring aerodynamic interference effects. These basic coefficients are modi-
fied to correct for the interference effects iteratively. The recurrence pro-
cedure used to calculate the Birnbaum series coefficients by satisfying the
surface boundary conditions on the blades is discussed in section 3 which also
contains a direct method for the same purpose. The estimation of the rotor-
stator aerodynamic interference is contained in section 4. In section 5, a dis-
cussion of the equations for obtaining the circulation distribution over the
blades, the axial and tangential forces and their distribution, the shaft power
absorbed by the rotor and the upwash field of the stage.

2. EIGENFUNCTIONS OF THE ROTOR AND STATOR

In this section, a brief procedure for obtaining the flow field of the
rotor and stator using a distribution of acoustic monopole and dipole flow sin-
gularities on the blade surface is outlined. The rotor and stator with Z
and % blades, respectively, are considered to be situated in an unsteady,
inviscid compressible flow field with the rotor placed upstream of the stator.
The incoming flows for the rotor and stator are assumed to vary harmonically
with the respective frequencies w, and wg. The perturbations produced by
the stage are considered to be small compared with the mean flow W; so that
the linearized equations of motion in three dimensions may be used to represent
the rotor and stator blades using suitable acoustic singularities. A coordinate
system rotating with the rotor blades is chosen with respect to which the free
stream has the mean velocity components

(0, Vp, W) = (0, Qr, W) (2.1)

in the cylindrical coordinate system. The axial velocity W, 1is assumed to
be constant through the stage. Relative to the rotating coordinate system




fixed to the rotor, the inlet condition to the stator corresponds approxi-
mately to the value obtained from the stage velocity diagram and has the
components

(0, Vs, Ws) = (0, Ry - tan apr, Wy) (2.2)

Since the chordwise and radial pressure distribution on the rotor and the
stator blades is represented by a Birnbaum series, the heart of the 1ifting
surface method is the determination of the coefficients of this series. In an
earlier paper, the linearized aerodynamics of the combined rotor-stator system
of an axial turbomachine for a uniform free stream using an acceleration poten-
tial representation was determined directly. A Green's function was introduced
to satisfy the linearized differential equation for the rotor and stator. The
radial variation of the Green's function for the rotor follows a Bessel's dif-
ferential equation. For the stator, due to the presence of a constant swirl
term W, tan ap, fintroduced by the rotor due to its exit blade angle ap,, the
radial variation of the Green's function is governed by a Whittaker differential
equation. To make use of convenient orthogonality properties, this equation is
transformed into the Laguerre differential equation. The Bessel and the gener-
alized Laguerre and Kummer functions are used as the orthonormal basis func-
tions to form the rotor and stator pressure eigenfunctions for the subsequent
11fting surface theory. The rotor and stator blades are represented by a sur-
face distribution of acoustic dipoles. The normalized radial pressure eigen-
function of the pulsating acoustic unit pressure monopoles on the rotor and
stator may be shown (ref. 5) to be

Qk!(r1) = A(k,2)d ) + E(k,!)Yk(k

k(M ke 1)

5 TS (2a) -2a “ o= 1 _ oz o
¥oe(ry) = C("'k'”Lg (r2) + D ry 1F](-u 20; 1 - 225 1), Ty = vgeT

(2.3)

where &o(ry) is the normalized cylinder function in which Jg(x), Yx(x) are
Bessel functions of the first and second kind, respectively; ¥gke(ry) 1s the
normalized stator eigenfunction in which stj(x) and 1Fy(a,b; x) are, respec-
tively, the generalized Laguerre function and the Kummer function; Ace and

viky are the corresponding eigenvalues to be determined; A, B, C, D are con-
stants; k = 0,+1,%+2,....; ¢ =1,2,3,...; ¢ =0,1,2,3,... . The eigenvalues gy
and vjky are obtained by satisfying the Neumann boundary conditions

ddyg/dry =0 at ry =h, and 1
(2.4)
d¥gke/dry = 0 at ry = Rgehg  and  Rgy

at both the hub and tip of the rotor and stator. The pressure field of the
surface distribution of pulsating unit pressure dipoles on the isolated rotor
and stator blades 1s obtained by differentiating the monopole pressure function
normal to the surface. The resulting pressure field for both the rotor and
stator can be shown to be given by '
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where AP, and APg are the net pressure distribution on the rotor and
stator blades, respectively which are functions of (pr, ¢r, {r) and
(ps, ws, Cs). The functions &x and ¥x are defined by
> o . “ -
27y btk t) = &y (o) Fg(r))Fp exp (1 Z) exp ALK(0 - oy ~ )]
(2.6)

2> ~ ~ -
Y (ryapgatyitoko ) = Folp ) Fo(r)fe exp (<o 12 1) exp 1k (6 - o - @.)]

for subsonic axial flow, M < 1. The pressure field P, of the rotor has been
obtained by summation over all the 2, rotor blades and likewise, the field of
the stator has been obtained by summation over all the 2 stator blades. The
functions fg, f2, $2¢0 and fg, F5o are listed in the Appendix; 2y = 77 - ¢y,

s = 21 - &s» prier.or.Cr) and pglps,9s,ls) are the respective locations of
the dipoles on the rotor and stator blades.

The radial and chordwise distribution of pressure on a blade of the rotor
and the stator is assumed to be given by the Glauert-Birnbaum series modulated
radially by the corresponding radial eigenfunction. The Birnbaum series coef-
ficients are assumed to be independent of the eigen-numbers %, k, &. Assuming
that the thickness and camber effects are linearly superposable within the
1imits of the 1inear theory used here, the net pressure distribution on the
rotor and stator blades can be written as

~ ©
~ . _ w
H](m,pr,kr,l) = (a% cot 5 * m§1

APr

o sin m:;)@kr,'(pr)
(2.7)
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These are written in the matrix form

Hy (.0, 3k,,2) = Nty (o)

(2.8)
Hz(mnps;"'kso") = ng?’iksn(Ps)
where M, o/, 4 denote the vectors
mn-= <F0t g , sin @, sin 2@, ..., sin mo, ...)
T
A = (‘%"‘11"12’ "-) (2'9)
P -

(go’g]’ sz -")

The superscript T indicates the transpose of the matrix and @ 1s the
Glauert angle parameter for the chordwise posjt1on y'| in the blade coordinate
system shown in (fig. 1). The coordinates y, and yg of the rotor and

stator are defined by
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In order to satisfy the boundary conditions on the blade surfaces, it is
necessary to calculate the resultant velocity at a point on the blade surface.
This is done by using the unsteady equation of motion in a helical coordinate
system (fig. 2) and integrating the perturbation pressure along the undisturbed
streamline direction (ref. 2) assuming that the pressure and the associated
velocities also vary harmonically in time.

3. THE BASIC SOLUTION

The Birnbaum coefficient vectors introduced in section 2 are unknown and
have to be determined by satisfying the appropriate conditions on the blade
surfaces. The procedure for calculating the resultant velocity at any point in
the flow field of the rotor and stator is described in this section. From this
the blade surface conditions can be obtained. We shall denote (0) and #(0)
to be the basic Birnbaum coefficient vectors of the isolated rotor and stator,
so that mutual interference effects are absent. In subsonic flow, these coef-
ficients will be perturbed by aerodynamic interference effects when the rotor
and stator are juxtaposed to form a stage. The resulting Birnbaum coefficients
of rotor-stator combination will be denoted by &/ and #. The basic coeffi-
cients o(0) and #(0) are determined by satisfying the surface boundary con-
ditions on the rotor and stator blades. As the stator approaches the rotor, the
induced velocity due to the stator disturbs the surface boundary conditions on
the rotor. Hence, the rotor Birnbaum coefficients &(0) must be changed to
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satisfy the surface conditions again. Likewise, the stator Birnbaum coeffi-
cients @&(0) must be changed due to the rotor interference field.

when the rotor and stator blades are kept in isolation, the resultant
velocity UR and Us at the blade surface can written in the respective blade
coordinate systems as

~ -
URxl sin o cos © 0 y
URy' = |sin @, COS © - sin a, sin & cos a Yo * cot 1
URz' -€0S a. €OS ® cos o sin 6 sin @, ¢+z + 1
Ule sin o cos © 0 %y
USy' = |sin @, cos 6 - sin . s1n‘e €os o Yo * cot © 5
. (3.1)
USz‘ L—cos ag COS 0 CcoS a sin 6 sin as- iéz + Ars
= XT“; = (X, cos © X, sin o,.) 4
Yr = %o = (X, m - X3 L
i?z = (X2 sin eh] + X3 cos eh1

T
%, = ngf Yo = (Y2 cos eh2 - Y3 sin eh2x3

¢§z = (Y2 sin eh2 + Y3 cos eh2 _

~where & and @ are the vectors of Birnbaum coefficients and the functions
"Xy, X2, X3, Y1, Yz, Y3 are listed below.
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The functions #, %, F, #, F5, Fy, Kr, Kg are defined in the Appen-
dix. Figure Al shows the angles @r, or for the rotor and likewise s, ¢s
on the stator. If Ry(ry, 64, z4) and S4(ry, ©4, z4) denote the vector posi-
tions of a set of points on the rotor and stator, the respective Birnbaum coef-
ficients are determined by satisfying the boundary conditions at these points
on both the upper and lower surfaces. If 2z' = z'(y') is the equation of the
blade profile in the blade coordinate system, the flow tangency condition is
expressed as t = (dz'/dy') = (Uz+/Uy'). Denoting by Z2' = 0+ and 2" = O-,
the upper and lower surface chord lines, the boundary conditions for the rotor
and the stator may be written as

Ug,y = Tyq U =0 Upy - 7 ;1 Ugo, =0
( Rz' = 01 Ry')z.=0+ ( Rz' ~ TL1 "Ry )z.=0~

(3.3)
U - U =0 Uo., - U =0
( sz~ Tu2 Sy')z.=0+ ( sz' L2 Sy')z,=0_

where T Ty are the chordwise slopes of the upper and lower surfaces at a
point on a rotor blade; W2 and T2 represent the corresponding quantities

at points on a stator blade. Substituting from equation (3.1) we can write
these equations as



k0 e g, gV ie gD g (3.4)

which can be rewritten as

(0) K €
Koo o= KL‘(L) r =<f(2>

2 U ’(3) I =<2§>

The matrices K, L, U, V, Iy, Ip are defined in the Appendix. From equa-
tion (3.5) we obtain the basic Birnbaum coefficients of the isolated rotor and
stator as: '

(3.9)

1
=

(0)
U, 98 " =

(0) -1 (0) -1
K-"4 =K T, @B = U, r, (3.6)

1t is possible to calculate the aerodynamic parameters of the rotor and
stator flow field using the basic coefficients.

4. THE RECURSION PROCEDURE

The Birnbaum coefficients of the isolated rotor and stator were determined
in section 3. 1t is possible to calculate the Birnbaum coefficients of the
rotor-stator combination using a recurrence procedure to be described in this
section. When the rotor and stator are juxtaposed, the perturbation velocities
at the rotor and stator blades may be written




(R) | (R)
X] Y1 0

URx'
_ (R) (R) T (R) (R)
URy' =8 x2 cos 6., - x3 sin % + Y2 cos 6, - Y3 sin 62 + |cot oy
(R) (R) (R) (R)
URzl x2 sin em + x3 cos ehl Y2 sin eh2 + Y3 cos °h2 1
(S) (S)
USx' x] Y] 0
(S) (S) T (S) (S) T
USy' = 6, x2 cos eh] - X3 sin °h1 + Y2 cos 6, - Y3 sin 02 B + |cot o
(S) (S) (S) (S) '
USz' x2 sin °h1 + x3 cos °h1 Y2 sin eh2 + Y3 cos eh2 Ars‘
sin © cos © 0
® =]sina_cos 6 -sina_ sin e CcoS o
r r r r
-CO0S L cos © cos . sin o sin .
(4.1)
sin o cos © 0
es ={ sin a cos © -sin @ sin © cos @
-COosS a cos © cos o sin © sin a

where & and @& are the modified Birnbaum coefficients written in series form
as

of = o£0) + (1) & (2) &+ |,

(4.2)
@ = g(o) + g(‘) v @(2) + ...
Using the equations (4.1) and (4.2) in the boundary conditions
equation (3.4), we obtain
K(a2(0) +a(1) +07(2) + .. .) + S(B(0) +g8(1) +@(2) + ..) =&
L((0) +z(T) 4g(2) + ..0) + T(@B(O) + (1) +@(2) + . ) =%,
(4.3)

M((0) +or(1) +0(2) &+ . ) + U(B(O) + (1) +@(2) + ) =3
N((0) +o(1) +0(2) + . ) + v(B(O) +(1) +@(2) + ..) =&

The four equations in equation (4.3) may be written conveniently as a pair
of equations



KL(M(O) +d(]) +d(2) +...) ¢+ STéO) +g“)
MN(M(O) +d(]) +.9/(2) to.Ll) Uvéo) +g“) +g(2) +o..)

From equation (3.5) we can obtain &(0) and @(0) such that
equation (4.4) can be reduced to

KL@’“) v\ w3y ST@]) "Q(Z) *3(3) +e)

vl vt +‘ cel) Uvél) +Q(2) +g(3) +..)

we obtain

-+

Q(z) t...) = r,

I
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substitute these in equation (4.5) and obtain

+.M(3) +J4) +o...) ST(Q(Z) +g(3) +g(4) v ...)

1) A1y, -
- s - espuyim 'y

Y I I I S I

1) -
. _n“;t‘ - HMKTISLUL T,

u@z) =_MN¢(1).
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(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)




and obtain

B D I
K ScUy MKT

@2 .yl
Substituting into equation (4.8) we get the revised equation

AU LIRS IR LY N g v K
an‘a) v uv(g(” @M -MNd‘Z)

from which using the same procedure as before we can obtain
(3) -1 2)
3 . s o
3) -1 Nm,(Z)
e Uy M
The sequence of Birnbaum coefficients may be written as follows:

L L N AT
R (1) -1 A0)
K 5# @ "=y, "N“(
2(2) _ _KETSTdU g(z) . _U;]Mﬂw“) (4.13)

(3) -1 2) (3) -1 2)
¥ . @ -y 't

1
(4.10)

0 TR B
+Uy MUKT STy T

(4.11)

(4.12)

e

(m) . (m-1) m) 10 Am-1)
dm=-KLS]G( . @ =-uvnﬂd(

It is observed that the successive terms of the sequence can be generated
easily by using the operators (K[1ST) and (UV1HN) repeatedly on
the result of the previous recursion.

Truncating the Birnbaum series at m = Mx, we have (Mx + 1) coeffi-
cients for each of the rotor and stator. Considering P+ points on each side
of a blade, we have 2Px equations to determine the (Mx + 1) coefficients of
the rotor and stator. Therefore, we must have 2Px = Mx + 1. The matrices
KL, MN, ST, and Uy are of order (2P X 2P*&. The matrices r} and I2 are
of order (2P« X 1). Each of the vectors o(0), (1), ..., @&(0), @(V), ...
is of order (2Px X 1). The Birnbaum coefficients may be written as

N



-1 (0) -1
o = KL (r]‘sw =/ -KLSTQ

(4.15)
-1 (0) -1
B=U, (T, - M) =@ - U, M

which clearly shows the coupled nature of the rotor-stator flow and the correc-
tion terms to the respective Birnbaum coefficients due to the aerodynamic
interference. The structure of the matrices K, L, M, and N 1is given in the
Appendix in truncated form along with that of ¢y, ¥, €3, and ¥,. Therefore,
the matrices K, My, ST, and Uy along with Iy and 2 are given by the

partitioned matrices
¢
_ (K (M 1
K = (L\) My = (N) Iy = (cgz)

() e e ()

In equation (4.16) we have Kia(R,), Lag(Ry), MaB(Re), Nag(Ry), SqR(Se) .
TaB(Sa) s UaB(Sa)s VaB(Sa)s €lalRa)s €2a(Ra), €3a(Se), and €a4(Ss) correspond-
ing to the points R, and S, on the rotor and stator blade respectively with
«a=1,2,3,...Px, 8 =m+ 1, m=20,1,2,3,...Mx. The matrices K., MN, ST, and
Uy are primarily aerodynamic in nature while the matrices ry and Tr2 are
purely geometric representing the blade section and the stage configuration.
The individual elements of the aerodynamic matrices K, L, M, N, S, T, U, V,
and the geometric configuration matrices ¥}, €», €3 and ¥ have been
defined in the Appendix.

(4.16)

From the simple recurrence procedure outlined above it s possible to
obtain the Birnbaum coefficients of the rotor-stator combination to any desired
approximation. In the next section we shall outline a direct method for calcu-
lating the Birnbaum coefficients for the rotor-stator combination directly.

5. THE DIRECT METHOD

In this section we shall obtain the Birnbaum coefficients of the rotor-
stator combination directly by satisfying the boundary conditions on the blade
surfaces of the rotor and the stator simultaneously without resorting to recur-
sion. For this we rewrite equation (4.4) as

HW'!- Uv@: [‘2

which form a pair of nonhomogeneous simultaneous equations for & and @B.
Solving the two equations simultaneously, o and G are given by

(5.1)
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A
AR -1 -1
(TKL‘“V"N> (Trl"“v‘"z)

R
-1 A R 1
(LST‘"NUV> (Lrl_"NFZ)

The Birnbaum coefficient vectors o and @& given by equation (5.2) per-
tain to the rotor-stator combination. Equation (5.2) gives directly an exact
form for the Birnbaum coefficients o and @& given approximately in
equation (4.15). We can relate the coefficients obtained by the two methods.
For this we rewrite equation (5.2) using equation (3.5) as

-
ol = (;‘KL -.?,) (s;‘r] _g‘o))
‘ (5.3)
.
@ =(g— "ﬁ‘“v) (.«‘0’ - n;jrz)

where % and % are defined by

(5.2)
@8

-1 -1
£=Ks % = U My (5.4)

We can write equation (4.15) in a form similar to equation (5.3) by decou-
pling the two equations. Thus, replacing 4 1n equation (4.15a) by the second
equation and solving for & and similarly replacing o 1in equation (4.15b)
using the first of equation (4.15) and solving for &8 we get

A = <’I -5&2&)—1%1(0) 1213(0)>
. (5.5)
g = (I —.g*.?)_1<g(0) -.?JO))
Comparing equations (5.3) and (5.5) we have the following relation
(1-22)"2- &' _2,7! (5.6)

between the operators of the recursive method and the direct method. Thus,
equation (5.5) may be used to obtain the exact Birnbaum coefficients o and
@ of the rotor-stator combination using the basic coefficients «(0) and

0) of the i1solated rotor and stator. Using the results obtained above, it
is possible to estimate the mutual aerodynamic interference between the rotor
and the stator. This will be described in the next section.

6. ESTIMATION OF MUTUAL INTERFERENCE

In the above, we have calculated two sets of Birnbaum coefficients (0),
@(0) and o, @B. As mentioned earlier, the coefficients o/(0), @(0) pertain
to the isolated rotor and stator and have no aerodynamic interference effects.
On the other hand, the coefficients &/, @@ pertain to the combined rotor-stator
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configuration in which aerodynamic interference effects are present. A1l the
flow field parameters of interest can be calculated using the Birnbaum coeffi-
cients appropriate to the configuration considered. We shall define the
interference in terms of the axial velocity differences between the two config-
urations. The perturbation velocity at any point can be written as the sum of
the perturbation velocities of the rotor and stator. Assuming for simplicity
wr = 0 and using equation (4.1), the perturbation velocity at any point
(r1, ©, z1) of the combined flow field can be written

x] Y]
1mst
Ari.8,2,,t,) = ¢ + ¢ =| Xycos eh] - X sin eh] + e Y, cos eh2 - Yy sin eh2 @
x2 sin eh + X3 cos eh Y2 sin eh + Y3 cos eh
1 2 2
x1 Y]
fo t
_ (o) 0) s 1
= x2 cos eh - X3 sin eh + Y2 cos eh - Y3 sin eh e
1 1 2 2
X2 sin eh + x3 cos eh Y2 sin eh + Y3 cos eh
] 1 2 2
X] Y]
1wst]
- | X, cos &, - )(3 cos 6, @- € Y2 cos &, - Y3 sin e -4
1 1 . 2 2
x2 sin eh + x3 sin eh Y2 sin eh + Y3 cos eh
1 1 2 2
(6.1)

Denoting the four terms of equation (6.1) by %o, ¥s0» Pis» Pir» the per-
turbation velocity vector %4 can be written as
> 2>

-5 > >
Y(r1,0,21,t1) = Yo + Yso + P51 + Pir (6.2)

In equation (6.2), the term iﬁo is the perturbation velocity due to the
isolated rotor; #50 1s the perturbation velocity due to the isolated stator;
4s 1s the ipterference velocity produced by the stator on the isolated rotor
field; and #45r 1s the interference velocity produced by the rotor on the iso-
lated stator field. The total interference velocity ¢4 may be written

7 - Y5 + Gy (6.3)

The interference factor ¢ may be defined as the ratio of the axial com-
ponent of the combined field to the sum of the axial components of the isolated
rotor and stator at the same point in the flow. Thus, we write ¢ as
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%, %
€ = v + w = v + -1 ' (6.4)
roz S02 roz wSOZ

As expected, from this equation we observe that the interference factor
e = (ry, 0, zy, ty) s a point function which 1s periodic in time.

7. DISCUSSION

In the recurrence scheme given above, it 1s possible to identify the aero-
dynamic interference effects clearly as opposed to the direct method. Never-
theless, the direct method is also an efficient method for determining the
Birnbaum coeffictents and thereby the aerodynamic characteristics. Both the
methods discussed above enable us to calculate the overall aerodynamic perform-
ance of the stage for a given axial and rotational velocity and a stage config-
uration. The calculation process may be repeated for changes in the velocity
and configuration parameters. Thus, it is possible to calculate the perturba-
tion changes for different stator blade angular positions ¢g for a given
rotor blade angle ¢p. Similar calculations for other configuration changes
between the rotor and stator may also be made. From a knowledge of the
Birnbaum coefficients, 1t 1s possible to calculate the distribution of pertur-
bation pressure AP, and AP on the upper and lower surface of the blades
containing the the aerodynamic interference effects

2
- yM (gé + g% cot eh])

ap_

(7.1)

2
- M (14 + 1% cot ehl)

8p,

We define the dimensionless axial and tangential force coefficients Cgyz
and Crg and the power coefficient Cp as

1,2

Cpp = F /(5 P MZC)

C. = F/(E p W 7

Fo = Fo/ (2 PM30) (7.2)
' W3R

Cp = P/(2 WR®)

The axial force coefficients Cgpz and Cgsz per unit blade span per
blade of the rotor and stator are given by
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ir =" "2 gaPu s1n(ar - ‘ru) - Apl s1n(ar - crl)% sin wdw

0
(7.3)

APu sin(as -ty

FSz 2 f’ ;

1 YMJ

) - Apl S‘\n(o.s - esl)} sin wdw
0

while the tangential force coefficients Cppg and Cpsg per unit blade length
per blade are given by

w
“rro " AP cos(a. - €..) - Ap, cos(a, - € ,){ sin wdw
dr] - YMZ u r ru ) r re
0
(7.4)
w
Tero - = AP cos(& - ¢ ) -ap. cos(a. - £_,)§ sin @ do
dr 2 u S su ) S s
1 ™
0
The power coefficient Cp of the rotor is given by
ZCR 1 2 o
CP = - " M2 gAPu cos(ar - ‘ru) - Ap! cos(ar - er!)§ sin o do dr1
Y hr Jo
(7.5)
- tan”! - tan”! - tan”] - tan”!
€ru = N Ty Epg = AN T, €su = A T2 € = tAN TPo

The upwash velocity of the rotor-stator combination is giVen by the velocity
component ¢, and may be written as ’

Y =P+ ¥, =Xy v V8 (7.6)

The circulation distribution over the blade span can be obtained by integrating
the pressure normal to the blade chord and is given by

c v
roo- . R (AP - &P ). sin @ do
R 2 u LR

™ o

(1.7)

1r
Cs i
l"s = - —if (APu - APQ.)S sin v do
M o _
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8. CONCLUSIONS AND SUMMARY ]

Using an acceleration potential method and the 1ifting surface theory, two
methods, a recursive and a direct method, for solving the mutually interacting
aerodynamic problem of rotor-stator combination have been outlined for deter-
mining the blade loading and other characteristics of an axial compressor stage
with the rotor placed ahead of the stator and each with a finite number of
blades. Expressions have been given for the resultant pressure field of the
rotor and stator separately for an unknown distribution of surface pressure
loading on the blades. The blade surface loading has been represented by a
modified Birnbaum-Glauert series with unknown coefficients. In the recursive
method, a set of basic Birnbaum coefficients is obtained by satisfying the con-
dition of flow tangency on both sides of the rotor and stator blades individu-
ally. The successive values of these coefficients are obtained to any desired
accuracy by a systematic matrix procedure on the basic set of coefficients to
account for the effects of rotor-stator interference. 1In the direct method,
on the other hand, the final values of the Birnbaum coefficients are determined
by a single matrix operation satisfying all the surface flow tangency condi-
tions simultaneously. The relation between the two methods has been shown by
relating the corresponding matrix operators. The Birnbaum coefficients o
and @& of the rotor-stator system have been related through the matrix opera-
tors to the basic Birnbaum coefficients o(0) and g(0) of the isolated
rotor and stator. Expressions have been given for calculating the perturbattion
velocities, the circulation distribution along the blades, the axial and tan-
gential forces on the blades and the power required by the rotor , using these
coefficients.
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NOMENCLATURE

A arbitrary constant of integration equation (3.1)

3 free stream speed of sound

B arbitrary constant of integration equation (3.1)

c blade chord

c arb1trary‘constant of integration equation (3.1)

D arbitrary constant of integration equation (3.1)

hy,hg rotor. and stator (hub/tip) radius ratio

J(r) Bessel function of the first kind equation (2.3)

kr.Kg : rotor and stator circumferential mode numbers

L(b)(r) generalized Laguerre function, of degree a and order b
a equation (2.3)

M Mach number of axial flow velocity = Wi/an

M rotor tip Mach number = Qry,/as

Mo Mach number of swirl component at rotor exit

M* number of Birnbaum series coefficients considered

Pr.Pg radial pressure functions of rotor and stator

;r( r1s ol 1) perturbation velocities of the rotor in the helical coordinate

system

->
ads( r2s o2 <2) perturbation velocities of the stator in the helical coordinate

system
Rx = M/M characteristic radius of rotor
Rsr = Tis/Tir stator tip radius/rotor tip radius
:(r,e,z) position vector of a point in cylindrical coordinates
ri = r/rer dimensionless radial coordinate
ro = vkeM radius parameter defined in equation (2.3)
ThrsThs hub radius of rotor and stator
TrsTts tip radius of rotor and stator
t time

18




t

t/t,

to rtr/wa'
ziu.v,w)

.’I ] t
Ut Fr M)
<>

U Uy Vs Hs)
Vr,Vg
@rr o Prz),
Ysr ¥s0,¥51)
Wy, Wg

Yr(r)

Iro. 250

Zr1,2r2
151,22

Zp .1

Ly = Z/rgy
Zur, Zys
Iy, 2Ls
ZeraZes
ZTr, 275

L) ~

yr’ gs

Qr ,Q.s

a?r

B = (1 - M2)1/2
By = (1 - M3)1/2

Apy,Apg

€

Y

dimensionless time

characteristic time parameter

local velocity vector in cylindrical coordinates (r,e,z)
perturbation velocities of rotor

perturbation velocities of stator

circumferential velocity of fluid for rotor and stator

(r,0,2) Components of perturbation velocity of rotor and
stator

axial velocity of fluid for rotor and stator
Neumann function of order k

axial position of mid-rotor/stator plane from reference
origin

axial coordinate of rotor leading and trailing edge
axial coordinate of stator leading and trailing edge
number of blades in rotor and stator

dimensionless 2z coordinate

upper surface ordinate of rotor and stator blade profile
lower surface ordinate of rotor and stator blade profile
mean line ordinate of rotor and stator b1adé profile
local half thickness of rotor and stator blade profile
parameter defined in equation (2.6)

stagger angle of rotor and stator blades

exit blade angle of rotor

Prandtl parameter

parameter used in equation (2.5)

net pressure difference on rotor and stator

rotor-stator interference factor

ratio of specific heats of gas
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rr,rs
Pr.,Ps
Pr»Ps

Bya ()

&«

¥ika(r)

Yx

PrsPs

(a)r ,ws

Ag
veke
Cr,Cs

I

Q

Subscripts:
Re/1Im

r,s

Azimuth angle of field point in cylindrical coordinate system
strength of local rotor/stator bound vortex

azimuth angle of pressure pole/dipole on rotor, stator blade
mean offset angle of first rotor and stator blade

normalized rotor eigenfunction of mode number k and P-th
eigenvalue

rotor subsonic pressure function equation (4.10)

normalized stator eigenfunction of order k, degree ¢
and  .-th eigenvalue

stator subsonic pressure function

radial position of pressure pole/dipole on rotor, stator
blade

Glauert angle of blade defined in equation (2.9)

1-th radial eigenvalue of rotor of circumferential mode
number k

1-th rotor axial eigenvalue of mode number k
stator radial eigenvalue
axial coordinate of rotor/stator pressure pole

angular frequency of oscillating rotor/stator pressure pole
(rad/sec) : ,

angular velocity of rotor

real/imaginary part

rotor, stator

hub, tip

unit vectors along (x,y,z) directions
cylindrical coordinates

local helical coordinates
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APPENDIX

The functions Fy, ....... Fe 1In equation (3.2) and the coefficients
Kr and Kg contained in it are defined by the following equation (A-1)

- A -~
MM kb
fo == + 1 8 sgn Zr
B
/21 08
f., = f f.e dz
1 o o2 1
Ky
f2 = ;: - ‘fotan Lo

r
a
02 = (RZ* cos °h2 + sin ehz)Z]

L, =1, - ¢,

- 55& tan exp i . +k (6 -¢
0 B op EXP 10, r Op T @ -

-
n

r

= >
* |
S
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z ‘ r.|

- Is 2 "
T3=ks 9—<ps-cps _Rz* +ms sin ehz 1 +R2*C0t6h2Cs
tan eh] = M/Mr1
& = Fo%
% = %%
%0 M |
Ho - ar, " 2 m, ;.A*“k_l("koﬁ) = I 1 Mg T T+ Y (N 7)) - Yk+1()‘k2r1)$
Zo = ¥y (r)) My
-1/2 r

d% rae ~ = - ~ - -
_ 750 2 L +a 1) (2a) L+ 20 (2a)
o = dr. - MSep C][( r. - 2)La (ry) - r, -1 (ry)

T VIR am. om.
v, [( rg - 2) F-l (—1 - 2a; 1 - 2a; r2> - ]F] (—! - 2a; -20; rz)]

lhY
&

N

S S 3
f = e
4 kS
1kS 21 1T2
f, = — f.e “dZ
6 RZ* 5 1
[--]
Z] 1T1
9, = f2e dZ]
o
1 cos Zeh]
93 = Tcos 61 (Ty * fi + f3)

( 1T2 )
= sin o h2 f5e - 1w594

[7=]
[%,]
[l
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_ _ _ -1
tan eh2 = M/(Hr] H2) = (cot 0 - tan a2r)

% = £o9;

% = F0%
- =r_ /2

. Yo o 2
0 = Yie(ry)riye

(a)s a
+ — tan sgn Z
kg ag S9N Lg

-H
h
© l—‘

S

4 . AT,
1ws fssgn Zse dZ]

-
L]

( iT, )
= sin eh] f2e - 1”rgl

V=]
N
i

=]
.
I

[}
w
"y
>
D

SO

2* "1 -R,tana, “ g M,
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Zre e—‘iorc] sin eh]
4ﬂ¥BH2

‘\wst]
) Zse e-msoz sin °h2

4

8vyM  tan %
M/M M= Hmr +‘ﬁkr
My = Mo /B

%093
Fo% (A1)
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The matrices K, L, M, N, S, T, U, and V are expressed by a linear
combination of the functions Xy, X, X3, Yy, Y2, and Y3 using
the coefficients A4y. The matrices K, L, M, N, S, T, U, V, and
coefficients A4y are given in equations (A-2) and (A-3) as follows:

T R Pt R P R R L AR R A P P A

L= £y = By # Rpky # Rygky T =gy = Ryp¥y + Bpg¥y + Ape¥y

M= fy = AgyXy # Aoy + Agaky U= gg = Ag¥y + AggY, + Ay

N fy o= Rygky # Ryoly + RygXy Vomgy = Ryy¥y + Ryg¥y + Rye¥e
A11‘= cos O (rU] sin a. + COS ar)

R]Z = sin @,,(7), cos a - sina ) - sin @ cos O (tyy SIn o, + cos o)

r

A13 = COS ehl('U1 cos a_ - sin °r) + sin o sin eh](tu1 sin a_ + COS a_)

r r r

14 = €05 © (rU] sin a_ + coS ar)

r

15 = sin ehZ(TUI cos «. - sin ar) - sin o cos ehz(rU1 sin a. + COS a )

r

516 = €0s @ ,(ty; €Os ap - sina ) + sin @ sin 6, ,(t,; sin o  + cos o)

%ﬁ = sin e cot o sin o, + COS ar) - (rU] cos o - sin cr)

AT

K31 = COS e(rU2 sin «_ + cOS as)

S

532 = sin em(rU2 €o0S a_ - sin as) - sin @ cos eh](-rU2 sin a, + COS a )

S

A33 = COS em(rU2 cos a_ - sin as) + sin. e sin °h1(TU2 stn a; + COS a )

H

K34 = COS e(rUz sin a«_ + COS as)

H

A35 = sin ehz(rU2 cos a_ - sin cs) - sin e cos ehz(rU2 sin ag + €OS as)

S

i36 = €0S Op,(7,, €0S ag ~ sin a ) + sin @ sin (7, sin a, + cos o)

S

%5 = sin 6 cot ehz(rU2 sin ag + COS as) - (1U2 €os a. - sin as)
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cos © (rL] sin «, + COS cr)

nN
—
i

r

A22 = sin eh1(‘L1 €os a, - sin ar) - sin @ cos
523 = €0s Op (7, COS o - sin o) + sin @ sin
K24 = cos 6 (tr , sina_ + cos a,)

525 = sin ehz(tL] cos a,_ - sin ar) - sin © cos
st = €os 8 (1, cOS fr - sin ar) + sin o sin
g% = sin 6 cot eh1(TL1 sin @, + COS ar) - (rL]
K4] = cos 8(t, sin ag + COS as)

542 = sin 61 (1 , €OS a - sin e ) - sin © cos
543 = €0s O (7, COS ag - sin ag) + sin 6 sin
R44 = cos 6(t1 , sin a, + COS o)

R45 = sin ehz(rL2 €os o - sin as) - sin @ cos
A46 = COS ehz(rL2 €os a - sin as) + sin o sin
iﬁ = sin 6 cot ehz(rL2 sin a  + COS cs) - (-rL2
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Oh](tL] sin a.

eh1(‘L1 sin LR

ehZ(TLl sin a,

ehZ(TL] sin @,

+

+

-+

+

cos - si
a. n ar)

Q

eh](-rL2 sin

Opy (T SN o

[

ehZ(TLZ sin o

th(th sin a

+

cos o - sin ag)

cos

cos

cos

cos

cos

cos

cos

cos

(A-3)




The schematic structure of the matrices K, L, ...U, and V for
determining the (Mx + 1) Birnbaum coefficients of the rotor and stator is
shown in equation (A:4) below:

i

®R) (R)  (R) (R,) (R) (R (R)) (R,)

1 1 1 1 1 1 1 1

1w o fe fim, \ % I %2 9in,

(R)  (R) (R, (Ry) (R) (R (R, (Ry)

K=| fi1g° f1i= f2 fim, S=l %0 M %2 Gim,
(Rpa) (Rpy) (Roy) (Rpu) (Rp) (Rpy)  (Rp,) (Rp)

1w o fi fim, o M %2 N,

(Ry) (R (R)) (R,) (R (Ry)  (R)) (Ry)

1 1 1 1 1 1 1 1

20 fa fa fam, 20 a1 922 Iom,

(R) (R (Ry) (Ry) (Ry)  (R) (R, (R,)

L=l fao fa fa fam, T=l 9% 9 92 Iom,
(Rpa) (Row) (Rpy) (Rp) (Rp) (Rpy) (R,,) (Rpy)

20 fa fa fom, 20 91 92 Iom,

f
f
f
f g
f g
f g
(5 (5 (S} (s,) (5 (5 () SN\ ae
fao fa fa Fam, 93 9 93 I3m,
(s,)  (S,)  (S,) (s,) (s,)  (s,)  (S,) (s,)
2 2 2 2 2 2 2 2
M=l fy  fy 3 Fam, U=] 930 931 93 9am,
(Spa) (Spa) (Spa) (Spa) (Spa) (Spa) (Spa) (Spa)
f0 fa  fa fam, 930 931 932 93m,
(5) (5 (s (s)) (5) (5 (5)) (s))
fao far fa2 fam, 9% 90 Y% Iam,
(5,) (s (5, (s,) (5,) (s (5 (s,)
fo fa T2 Fam, V=l %0 9 e Iam,
(Spa) (Spa) (Spe)  (Spa) (Spa)  (Spa) (Spa) (Spa)
00 o fa fam, da0 9 % Yum,
30

(4} (73 A

€2 2 €32 ©2
17 2 3" 4 7

3 €23 | € ©s

éip, €20, 3, “ar,

27



9. REFERENCES

. McCune, J.E., "The Three Dimensional Flow Field of an Axial Compressor
Blade Row-Subsonic, Transonic and Supersonic," Ph.D. Thesis, Cornell
University, 1958.

. Namba, M., "Lifting Surface Theory for a Rotating Subsonic or Transonic
Blade Row," ARC-R/M-3740, 1974.

. Schulten, J.B.M.H., "Sound Generated by Rotor Wakes Interacting With a
Leaned Vane Stator," AIAA Journal, Vol. 20, No. 10, Oct. 1982,
pp. 1352-1358.

. Kaji, S. and Okaszaki, T., "Generation of Sound by Rotor-Stator
Interaction," Journal of Sound and Vibration, Vol. 13, No. 3, Nov. 1970,
pp. 281-307.

. Ramachandra, S.M., "Acoustic Pressures Emanating From a Turbomachine
Stage," AIAA Paper 84-2325, Oct. 1984. (NASA TM-83734).

28




~ . Y;=—CR cos &y

N : ROTOR

STATOR

r A yg =*Cg cos g

Py Y
-
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FIGURE 3. - SCHEMATIC DIAGRAM OF CASCADE.
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